
Statistical Signatures for Fast Filtering of
Instruction-substituting Metamorphic Malware

Mohamed R. Chouchane
CACS

UL Lafayette
Lafayette, Louisiana, USA

mohamed@louisiana.edu

Andrew Walenstein
CACS

UL Lafayette
Lafayette, Louisiana, USA
walenste@ieee.org

Arun Lakhotia
CACS

UL Lafayette
Lafayette, Louisiana, USA
arun@louisiana.edu

ABSTRACT
Introducing program variations via metamorphic transfor-
mations is one of the methods used by malware authors in
order to help their programs slip past defenses. A method
is presented for rapidly deciding whether or not an input
program is likely to be a variant of a given metamorphic
program. The method is defined for the prominent class of
metamorphic engines that work by probabilistically selecting
instruction-substituting program transformations. A model
of the probabilistic engine is used to predict the expected
distribution of instruction forms for different generations of
variants. These predicted distributions form a type of “sta-
tistical signature” for the output of the metamorphic en-
gines. A classifier is defined based on distance between the
observed and the predicted instruction form distributions. A
case study using the W32.Evol virus shows the classifier can
distinguish between malicious samples from multiple gener-
ations. The classification method may be useful for practi-
cal malware detection by serving as an inexpensive filter to
avoid more in-depth analyses where they are unnecessary.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—in-
vasive software; K.6.5 [Management of Computing and
Information Systems]: Security and Protection—invasive
software

General Terms
Measurement, Security

Keywords
Virus Scanner, Metamorphic Engine

1. INTRODUCTION
Malware authors frequently try to disguise their programs

in order to avoid detection. One way they do this is to use

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORM’07, November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-886-2/07/0011 ...$5.00.

a system that can automatically generate multiple different
variants of a program. One way this can be done is by using
a transformation system such as a metamorphic engine [14].
A metamorphic engine transforms the program during prop-
agation; this alters the form of the descendant copies so as
to reduce the number of constant patterns that can be used
as a basis for detection.

Multiple approaches can be used to counteract the ef-
fects of such variation-inducing transformations. For exam-
ple, there are program normalization approaches that could
be used to remove the differences between variants and al-
low them to be detected more easily as a group [10]. Ap-
proaches in this vein include engine-specific normalization
approaches [16], as well as more general normalization meth-
ods [2, 5]. Alternatives include more complex methods to
detect unchanged program properties such as execution se-
quences. For instance, it is possible to use semantic-level
program analyses to recognize a program’s behavior [11, 8,
4] even if its form has been metamorphically transformed.

Regardless of whether such proposals work well enough,
a problem that arises is that the cost of analysis may be
so high that it is infeasible to use them for every possible
executable that must be tested. This leads to the question:
is there a fast method for testing an executable to determine
whether it is worthwhile expending the cost of more intensive
analysis?

This paper presents a method for constructing a decision
procedure that may be used to try to efficiently determine
which transformation engine is likely to have produced a
program in question, if any. The approach is targeted to
that class of metamorphic engines that probabilistically se-
lect instruction-substituting transformations, and possibly
rename registers and permute instruction ordering. The ap-
proach leverages the fact that the expected distribution of
various instruction forms within the descendants can be pre-
dicted from the probabilities of the various instruction sub-
stitution transformations. That is, the engines leave a type
of statistical signature, i.e., a type of “engine signature” [3].
A decision procedure can be constructed by comparing the
predicted instruction form distributions to the actual dis-
tributions found in a suspect program. A case study on
the metamorphic virus W32.Evol suggests that the approach
may be feasible in practice.

Section 2 presents the overall approach, as well as the class
of metamorphic engines covered by the method. Section 3
describes a method for creating a predictor of the distribu-
tion of instructions for any given metamorphic generation;
it also describes how to construct a procedure for deciding

whether a given input sample is likely to have been generated
by the modeled engine. Section 4 presents the case study.
Conclusions and open issues are presented in Section 5.

2. PROBABILISTIC ENGINE MODELING
One of the fundamental constraints on closed-world meta-

morphic malware is that the engine must only produce pro-
gram outputs that it is itself able to parse and manage; if
it fails to do so, at least some of the offspring it creates will
not be able to run and multiply correctly [9]. Furthermore,
it is a principle of good metamorphic engine design that the
engine is able to transform much of the program, else it will
leave constant portions that may be used for recognition [3].
In addition, it seems plausible that many real metamorphic
engines will have limited repertoires of transformations they
are able to make. That is, they will be capable of generating
output instructions selected from only a limited set of forms.
Repeated application of these transformations (over gener-
ations) may only serve to emphasize this limited repertoire.

In combination, the above observations suggest it may be
effective to identify variants of the metamorphic program by
examining the programs for indications of being constructed
by the limited repertoire specific to the metamorphic engine
(as it applied to the initial program). A similar idea under-
lies attempts to detect authorship after noting that authors
can be viewed as generators with idiosyncratic propensities
for generating certain structures and phrases [7].

The present paper uses similar motivation to model a
metamorphic engine as a probabilistic language generator,
and then uses statistical properties of input programs as
measures indicating the likelihood that they were“authored”
by the modeled engine. It focuses on the specific class of
metamorphic programs which operate by probabilistically
selecting instruction-substituting transformations, perhaps
in combination with register renaming and instruction per-
mutation. Examples of these sorts of transformations are
illustrated in Figure 1. Several examples of metamorphic
engines with such combinations of transformations are found
in the literature (e.g., Ször [14]). We define this class more
formally using a transformation engine model, as follows,
and then discuss properties of the class it identifies.

Let M denote a metamorphic engine with a finite set of
n transformation rules ti, of the form T = {t1, t2, ..., tn}.
Let an instruction form be an abstracted machine language
statement such that specific registers and constants are not
considered (but operation and indexing modes, etc., are).
Let each ti map one instruction pattern li to a non empty
set ri = {ri1

i , ri2
i , ..., rimax

i } of possible code segments with
distinct instruction forms. Thus, each application of any ti

alters the composition of instruction forms in one of a set of
known ways. Each ti is accompanied with a rule application

probability Pi and each element r
ij

i in its right hand side is

accompanied with a probability of use Pij

i . The probabilities
of use must add up to 1; that is, for each right hand side

ri, we have
Pimax

j=1 Pij

i = 1. Two different rules must not
have left hand sides with identical instruction forms. T can
be considered M’s repertoire of instruction form transfor-
mations.

The rule application probabilities and the probabilities of
use are assumed to be either (1) fixed for each rule and ex-
tractable interactively from the metamorphic engine or (2)
implemented (as in W32.Evol and W32.Simile) using a ran-

���������	
��

���
������	

���������	
���
���������	
�����
���������	
���

���
������	
���������	
��
����������	���
���	

����������

������������	

�������������
����
�������
��������������
����������	
���
�����������
�����
���������������
�������������	�
����
������	
����������������
����
�������
����������������
��������������
��������������������
����
�
����

��	
��
�
����	
��

�������
�
����	
��

������������	

�������������
����
�������
��������������
����������	
���
����������	
�����
���������������
�������������	�
����
������	
����������������
����
�������
����������������
��������������
��������������������
����
�
����

������������	

�������������
����
�������
��������������
����������	
�����
����������	
���
���������������
�������������	�
����
������	
����������������
����
�������
����������������
��������������
��������������������
����
�
����

Figure 1: Examples of considered transformations

dom or pseudo-random number generating procedure that is
part of the engine. If the latter is the case then we assume
that the choices are uniform for each rule; that is, the rule
application probability Pi = 1/ki for each rule ti, where ki is
the number of choices uniformly made to determine whether

to apply rule ti. The probability of use is Pij

i = 1/imax for

each r
ij

i .
Let M execute by selecting some subset S of instructions

to attempt to transform based on the outcomes of the proba-
bility function applied to each instruction that it may trans-
form. Let SS be the method that M uses to select S, and
let ST be the traversal method that M uses to apply trans-
formations on S (ST can be seen as the iterator method and
SS the iteration set constructor). At each transformation
point matching the left hand side li of a certain rule ti, with
probability Pi the engine transforms the instruction. Once

this decision is made, with probability Pij

i the engine substi-

tutes li for r
ij

i . These probabilities are assumed to be fixed,
or exactly learnable from the description of the engine, for
each rule of the transformation system.

Figure 2 provides a fragment of an example rule set. The
set in the figure uses just one possible syntax for instruc-
tion forms in which special symbols reg and imm are non-
concrete; for instance, both of the instructions push %ebp

and push %ebx are of the same instruction form, namely
push reg.

Note that some of the rules may be viewed as “garbage”-
inserting, i.e., as inserting code that is irrelevant to the over-
all behavior of the output program. The third rule of Fig-
ure 2 is an example of one such rule. The right hand side
of this rule has different operational semantics than the left
hand side: the mov reg, imm instruction stores a value in
register reg. This assignment may corrupt the semantics

li → {ri1
i ri2

i ri3
i }

1 mov [reg1+imm], reg2 → push reg push reg

mov reg, imm mov reg, reg1

mov [reg1+reg], reg2 add reg, imm1

pop reg mov [reg+imm2], reg2

pop reg

2 mov reg, imm → mov reg, imm1 mov reg, imm1 mov reg, imm1

add reg, imm2 sub reg, imm2 xor reg, imm2

3 push reg → push reg

mov reg, imm

4 sub reg, reg → xor reg, reg

Figure 2: A fragment of a modeled transformation set using abstracted assembly notation

of the program being transformed. This risk, however, is
non-existent in the case of W32.Evol because its variants are
crafted such that the rule modifies register eax, which is
never live after each push eax instruction in the code of any
of its variants (of course modulo some programming bugs).

The above model is general enough to allow for a variety
of known and envisioned implementation styles for meta-
morphic engines. A particular engine, for example, might
implement the selection and traversal functions SS and ST

by performing a linear sweep disassembly and then sequen-
tially searching for applicable transformation rules for each
item in the linear sweep. The real engine might implement
the rules ti as separate rules such that each ti can be seen
as a logical grouping based on the instruction form of the li.
The model is also general because it makes no statements
about additional rule constraints, and permits several other
additional types of transformations. These can be seen as
relaxations on more strict models.

First, the model makes no statements about additional
constraints on the transformations. For example, certain
transformations may be selected by the engine only when
certain conditions hold. The garbage-inserting rule described
above is an example of when an engine may simply make
an assumption that the condition “immediately after each
push eax instruction, the contents of register eax may be
safely altered” is always true. See Walenstein et al. [17] for
more on the design choices of metamorphic malware. These
constraints are permitted because the probabilistic proce-
dure presented in this paper works regardless of the effect of
the transformations on the semantics of the malware. The
set of variants generated under the restriction that certain
conditions must hold is simply a subset of that which can
be generated if transformations are unconditionally applied.

Second, the engine is allowed to perform transformations
apart from the modeled ones so long as they do not al-
ter their instruction-composition. That is, the engine may
choose to perform extra transformations to the variants be-
ing transformed as long as they do not change the distri-
bution of the instruction forms. Permitted transformations,
therefore, include register renaming and instruction reorder-
ing.

3. STATISTICAL SIGNATURE-BASED
CLASSIFIER

It is typical that variants of metamorphic malware are
themselves transformable, giving rise to generations of de-
scendants of a given variant. We will use the term archetype
to refer to the variant of the malware that one has at hand
and whose descendants one would like to be able to detect.
Note that, for a given positive integer n, a program P is an
nth-generation descendant of the archetype if there exists a
sequence of n engine runs, feeding the output of each run as
input to the next run, starting at the archetype and return-
ing P . Note also that a given program may belong to one
or more generations of descendants of the archetype.

Once a particular probabilistic instruction-substituting
metamorphic program is modeled, it is possible to predict
the frequency with which various instructions may be found
in any of its descendants. With such predictions it is possible
to define a classifier which uses these predictions to decide
whether a given sample is likely to be a descendant of the
given metamorphic engine.

3.1 Instruction form distribution prediction
In what follows, the actual distribution vector, denoted

ad(P), of a program P refers to a vector of tuples such that
its first component represents an instruction form, and the
second the number of occurrences of that instruction form
in P . All of the instruction forms of P ’s instruction set are
represented in the distribution vector, and no redundancies
are allowed.

A procedure is defined below that predicts, for given posi-
tive integer n and archetype a of an instruction-substituting
malware, the average instruction form distribution of nth-
generation descendants of a. The predicted distribution for
generation n of archetype a is denoted pdn(a). This distri-
bution is simply a vector of tuples as per the ad(P), but
whose counts represent the expected average of counts for
the instruction forms which may occur within the descen-
dants. This is the vector we propose to use as a “statistical
signature” with which to calculate the likelihood of being a
variant derived via the metamorphic engine.

The motivation for choosing this distribution measure de-
rives, in part, from the observation that the average fre-
quencies of the instruction forms in any given variant out-
put by an instruction-substituting engine M can be exactly

predicted when given the frequencies of the instructions in
the archetype and the full description of the probabilistic
transformation system of M. The expectation is that the
averaged vector is likely to resemble many of the the actual
distribution vectors of the nth-generation descendants of the
archetype.

The predicted distribution vector for the first generation,
pd1(P) is returned by the procedure described in Algorithm 1.
The procedure takes as input a metamorphic engine model
in the form of T (the transformation set) and the actual
distribution vector ad(A) for the malware archetype A. It
returns a predicted distribution vector of first generation
descendants of A. The expression v[i] is the component of
distribution vector v that represents instruction form i. This
component holds the frequency of form i in the code segment
whose distribution vector is v. Implicit in the procedure is
the availability of the probabilistic transformation system of
M. (The rule application probabilities Pi and probabilities

of use P
ij

i are defined in Section 2.) The algorithm can be
optimized to handle only the subset of the instruction set
composed exclusively of those instructions which appear in
its input probabilistic transformation system and malware
variant. This way a smaller vector containing only the fre-
quencies of these instructions would have to be constructed
and manipulated.

Algorithm 1: Distribution Prediction.
Input: (T, ad(a))
Output: pd1(a)

foreach instruction I
if I is identical to the left hand side li of

some rule of T
pd1(a)[I]+=�(1 −Pi) × ad(a)[I]�
foreach r

ij

i

foreach instruction I’ in r
ij

i

f
ij

i [I′]= count of I’ in r
ij

i ;

pd1(a)[I′]+=�f ij

i [I′]×ad(a)[I]×Pi×Pij

i �;
else
pd1(a)[I]+=ad(a)[I];

return pd1(a);

The outer foreach loop of Algorithm 1 can be nested into
a new loop that would run it n times, for some positive
integer n. After each ith run, the new loop would make
the inner loop use pdi(A) vector as its ad(A) vector. This
augmentation allows the basic prediction procedure of Algo-
rithm 1 to produce the predicted frequency vector pdn(A)
of nth-generation descendants of its input archetype.

3.2 Classifier construction
A classifier can be constructed that can be used to match

a sample to the metamorphic engine that is most likely to
have constructed it, if any. The approach uses the pre-
dicted instruction distributions as a type of signature. The
method works by constructing predicted instruction distri-
butions pd1, . . . , pdk for k different generations, and test-
ing to see if the distance to the actual distribution found is
greater than some threshold. The k selected is specific to
the engine in question.

More formally, the classifier is defined as follows. Define
a decision vector

DV = ((pd1, ε1), (pd2, ε2), . . . , (pdm, εm))

where each pdn is the predicted instruction form distribu-
tion of generation n, and each εn is a threshold associated
with generation n. A distance measure dn(A, P) is defined
between the nth-generation predicted instruction distribu-
tion for A, pdn(A), and a measured or actual distribution
of the suspect program P , ad(P). One of many distribution
comparison methods could be chosen to implement the dis-
tance measure. We chose one based on the Euclidean norm
to measure vector magnitude. The Euclidean norm, ||x||,
of a vector x = (x1, x2, ..., xm) is

qPm
j=1 x2

j . The distance,

||x − y||, between x and some vector y = (y1, y2, ..., ym) isqPm
j=1(xj − yj)2. ad(P) is computed by extracting from P

the frequency of each of its instructions, which must include
the selected set S. Its distance, dn(A, P), to the predicted
distribution vector pdn(A) of nth-generation descendants of
a given malware archetype A is

dn(A, P) =
||ad(P) − pdn(A)||

||pdn(A)|| .

On input P , the classifier works by looking for the value of
n that maximizes the value of dn(A, P) such that dn(A, P) ≥
εn. An alternate scheme selects only some subset of DV as
the statistical signature.

4. CASE STUDY
A small case study was performed in order to explore how

well the classifier works, i.e., how well the statistical signa-
tures can separate the classes of variants and non-variants.
The general design involves extracting the predicted instruc-
tion form distributions for several generations, examining
how well these matched various simulated variants, and then
exploring how well the classifier works. The study was per-
formed using the metamorphic virus W32.Evol. This study
is limited since it uses only one engine; it serves only as a
proof-of-concept that the approach may be used to discrim-
inate arbitrary code from possible descendants of metamor-
phic malware using a non-trivial metamorphic engine.

4.1 Subjects and Preparation
W32.Evol was chosen to illustrate the distribution pre-

diction approach because (a) it is considered to be a typ-
ical example of a complex metamorphic engine [14], and
(b) it meets our definition of malware equipped with an
instruction-substituting metamorphic engine. The archetype
of W32.Evol that was used was manually extracted from an
infected executable in the VX Heavens archive [15].

The transformation rules of W32.Evol were manually ex-
tracted [12]. Then they were abstracted and collected into
a probabilistic transformation model as described in Sec-
tion 2. Hand analysis of the W32.Evol code revealed that
its engine chooses to transform instructions that happen to
be left hand sides of its transformation system by reading
a string of three bits at some memory location randomly
computed at run time and transforming if the bit string is
000. We hence assigned the value .125 to each rule applica-
tion probability Pi. Once the decision is made to transform,
the corresponding right hand sides are equally likely to be

chosen. We therefore assigned the value 1/|rij

i | to each prob-

ability of use, P
ij

i .
The probabilistic transformation model was used to con-

struct a probabilistic generator of simulated descendants.

Buckets for Various Distance Ranges

gen [0.,.05[[.05,.10[[.10,.15[[.15,.20[[.20,.25[[.25,.30[[.30,.35[≥.35

1 267 729 4 - - - - -

2 - 398 598 4 - - - -

3 - - 406 593 1 - - -

4 - - - 204 775 21 - -

5 - - - - 14 703 281 2

Table 1: Counts of samples falling in various distance ranges (per generation)

5,000 simulated descendants were created using this simula-
tor; these consisted of 1,000 simulated samples from 5 dif-
ferent generations. Another 5,000 simulated “non-variant”
code segments were also generated. These segments were
made up exclusively of those instructions that are process-
able by the engine. They were generated in order to chal-
lenge the distribution-based predictor; completely random
simulated programs are unlikely to contain many of the in-
struction forms from the predicted distribution, and even
ordinary Windows executables may not contain many in-
struction forms from the predicted distribution since the
compilers may not generate them.

8,421 benign executable and DLL files were selected from
a typical and clean Windows XP Pro installation. The were
selected by collecting all such files together and keeping
only those that disassemble using the objdump program from
GNU binutils.

4.2 Apparatus
A small program was written to extract out the actual in-

struction form distributions from executables; it disassem-
bles the executables using objdump before abstracting the
instructions and collecting the distribution of the resulting
instruction forms.

A distance calculator was created that takes as input a
predicted instruction form distribution and an actual dis-
tribution, and then outputs the distance between them, as
outlined in Sections 3.1 and 3.2. Next, a classifier was con-
structed as per Section 3.2 such that, when given a thresh-
old, predicted distribution, and actual distribution for a pro-
gram P , classifies P as a variant or non-variant.

4.3 Protocol
Distances between simulated samples and the predicted

distribution were recorded for each of the 5 generations.
That is, for generation 1, the distance between pd1(A) and
ad(j) was recorded for the 1,000 simulated samples for that
generation.

A distance threshold of .6 was selected for the classifier
based on an examination of the distances observed in the
above. The actual instruction form distributions for the
8,421 authentic benign files were extracted using the pro-
gram described above. Then these actual distributions plus
those of the 5,000 simulated descendants and 5,000 sim-
ulated benign files were submitted to the classifier. The
classifier used the predicted distributions from generations
1 through 5 to classify these inputs, and the classification
decisions were recorded. In addition, a simple receiver op-
erating characteristic (ROC) graph [6] was constructed by
varying the threshold from .05 to 1.0 in .05 increments.

4.4 Results
The first part of the study provides an indication of what

distances can be expected in matching the averaged, gen-
eration-specific predicted distribution to actual distributions
of variants. The results are reported in Table 1. Each row
i of the table reports how many simulated descendants fell
within given distance ranges. For example, for the third gen-
eration, 496 simulated third-generation variants had their
actual distributions within [.10, .15[of the predicted pre-
dicted distribution.

The ROC graph showed that two classes were cleanly sep-
arable using the distance measure. That is, when the thresh-
old was lower than the lowest non-variant distance, then pre-
cision and recall were perfect, except in those cases where
the threshold was also less than the maximum distance for
the variants, in which case recall was less than perfect. This
is expected, as the lowest non-variant distance recorded was
.946, which is greater than the maximum distance recorded
in Table 1.

4.5 Discussion
The study is limited in a number of important ways. It

does not measure the effects of host programs in the spe-
cific case of parasitic file-infecting viruses. Nonetheless, even
though the study is of a single case, we expect that the
W32.Evol case is fairly typical of a practically important
class of metamorphic engines. The perfect classification
scores and low distances measured still provide evidence
of the basic feasibility of the statistical signature-based ap-
proach.

The source of the classification power in distinguishing
descendants from non-descendants may simply be that the
repertoire of instruction forms for W32.Evol are highly re-
stricted and, thus, not substantially similar to the distribu-
tions one would find in benign files—or perhaps even other
malware. This information may be more discriminating
than using simply bytes or operations (without operands),
which has been common in other statistical treatments in
the field [1, 13]. For example, as Bilar [1] showed, the dis-
tributions of the operations alone are unlikely to be distin-
guishing enough. Instruction forms, however, carry more
specific information, and a typical metamorphic engine may
be expected to generate only a restricted subset of these.
The study does not shed light on whether the instruction
form distributions provide a strong enough signal to reliably
detect in executables with file-parasitic viruses infecting an
executable. If it does not, it may not be necessary to actu-
ally separate the parasitic code from its host before detec-
tion. If this cannot be done, the technique may need to be
restricted to only the non-parasitic metamorphic malware,
such as stand-alone Trojans, downloaders, etc.

Table 1 indicates that the heuristic of averaging the distri-
butions may be reasonable since the distance between actual
and average tends to be small even for several generations.
In addition, the table indicates that, for this particular meta-
morphic engine, we may expect the classification accuracy to
drop as the number of generations increase. This may be an
artifact of W32.Evol’s particular engine, as it is “divergent”
in the sense that it contains several instruction substitutions
that replace single instructions with multiple instructions.
It may also be in part due to the statistical nature of the
test. For a generation i > 1, the range of possible instruction
form distributions in the succeeding generation may be more
“spread out” in the sense that the distances between actual
distributions and the averaged distribution may be greater.
To wit, the distance of first generation descendants to their
predicted average may be the smallest because the average
distribution is predicted on input a relatively smaller num-
ber of modifications of the archetype. This noted, for the
study the loss is nevertheless not too severe that the classi-
fications could not be practically useful, as W32.Evol grows
too quickly between generations to permit variants with long
descendant histories to be seen in the wild.

5. CONCLUSIONS AND OPEN ISSUES
The paper defines an approach for constructing classifiers

that could be used to rapidly decide whether a suspect pro-
gram is likely to be a variant of a metamorphic program,
and thus worth spending time on more costly—and presum-
ably more precise—analysis. The classifier is “engine-aware”
in the sense that the predicted instruction form distribu-
tions it uses are generated using knowledge of a particu-
lar metamorphic engine’s transformation rules and their at-
tached probabilities. A small case study on a representative
metamorphic virus provides a proof-of-concept test that the
statistical signatures may be feasible and effective in prac-
tice. The fact that the classes were so cleanly separated in
the study, in fact, gives us reason to wonder whether if the
approach, by itself, may function adequately as a detector,
in some instances, instead of being restricted to serving as
a cheap filter to shield more costly analyses.

The approach and study also leave a list of open issues.
The study is limited in scope, so it is difficult to know which
metamorphic engines will create fundamental problems, i.e.,
what the defeats are. One possible defeat for the classifier
is to ensure the instruction form distributions match large
numbers of benign files. This would likely require that the
repertoire of the engine mimic classic instruction form pro-
files to a much higher degree than W32.Evol does. This
places constraints on the metamorphic engine designer, and
it would be advantageous to know just how strong these con-
straints are. In those cases, in order to avoid too many false
negatives the filter threshold may need to be higher. It is
an open question as to how frequently the threshold would
need to be set so high that the false positive rate renders
this quick test approach ineffective as a filter for the more
costly techniques.

Another limitation of the approach, as it is presented,
is that a much needs to be known about the metamorphic
engine (and archetype) in order to make it work. Apart
from the transformations themselves, the instruction selec-
tion methods be known. That is, one must know how to
disassemble the suspect programs so as to construct the ac-
tual instruction form distribution. If the transformation sys-

tem can be assumed to be modeled, then it is perhaps not
any additional stretch to assume the disassembly technique
is also duplicated. It is an open issue, though, as to how
prevalent and serious a concern this would be in practice.

It has been argued that engine-aware approaches for meta-
morphic engines may be feasible in practice since the num-
ber of known metamorphic engines is considerably smaller
than the number of actual malicious programs, and because
they evolve relatively slowly [16]. Thus, although model-
ing metamorphic engines is an expense, engine-aware ap-
proaches may still scale as well as other techniques such as
signature-based methods, since they involve analyzing each
malicious program individually rather than the metamor-
phic engines as a class. Nonetheless, the method outlined
in the paper may not be the only feasible way to generate
statistical signatures. Specifically, the signatures are aver-
ages of the predicted instruction form distributions. Appeal-
ing to standard sampling theory, the true average distribu-
tion should be rapidly approximated by collecting sample
variants and measuring their instruction form distributions.
That is, if sufficient numbers of metamorphic variants can
be collected, then a mechanical process may be used to ex-
tract the necessary statistical signature. This is perhaps not
an unlikely possibility in the case of an anti-virus company
responding to an outbreak involving possibly hundreds of
collected samples. Whether this approach would be feasible
(particularly for parasitics) is still an open question.

Acknowledgements
Thanks to Rachit Mathur for extracting the transformations
and probabilistic methods of W32.Evol. Funding for this
work was provided in part by the Louisiana IT Initiative.

6. REFERENCES
[1] D. Bilar. Statistical structures: Fingerprinting

malware for classification and analysis. In Blak Hat.
Black Hat, 2006.

[2] D. Bruschi, L. Martignoni, and M. Monga. Using code
normalization for fighting self-mutating malware. In
Proceedings of International Symposium on Secure
Software Engineering. IEEE, March, 2006.

[3] M. R. Chouchane and A. Lakhotia. Using engine
signature to detect metamorphic malware. In 4th
Workshop on Recurring Malcode (WORM), 2006.

[4] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant. Semantics-aware malware detection. In
Proceedings of the 2005 IEEE Symposium on Security
and Privacy (S&P’05), pages 32–46, 2005.

[5] M. Christodorescu, J. Kinder, S. Jha,
S. Katzenbeisser, and H. Veith. Malware
normalization. Technical report, Department of
Computer Science, The University of Wisconsin, 2005.

[6] T. Fawcett. ROC graphs: Notes and practical
considerations for researchers. Technical report, HP
Laboratories, Palo Alto, U.S.A., Jan. 2003.

[7] I. Krsul and E. Spafford. Authorship analysis:
Identifying the author of a program. Computers and
Security, 16(3):233–257, 1997.

[8] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and
G. Vigna. Polymorphic worm detection using
structural information of executables. In Proceedings
of the 8th Symposium on Recent Advances in Intrusion

Detection (RAID’2005), Lecture Notes in Computer
Science. Springer-Verlag, 2005.

[9] A. Lakhotia, A. Kapoor, and E. U. Kumar. Are
metamorphic viruses really invincible? - partI. Virus
Bulletin, pages 5–7, December 2004 2004.

[10] A. Lakhotia and M. Mohammed. Imposing order on
program statements to assist anti-virus scanners. In
Proceedings of the 11th Working Conferenceon Reverse
Engineering, 2004.

[11] A. Lakhotia and P. K. Singh. Challenges in getting
’formal’ with viruses. Virus Bulletin, pages 15–19,
September 2003 2003.

[12] R. Mathur. Normalizing metamorphic malware using
term-rewriting. Master’s thesis, Center for Advanced
Computer Studies, University of Louisiana at
Lafayette, Dec. 2006.

[13] S. J. Stolfo, K. Wang, and W.-J. Li. Towards stealthy
malware detection. In Malware Detection, volume 27
of Advances in Information Security. Springer, 2007.

[14] P. Ször. The Art of Computer Virus Research and
Defense. Symantec Press. Addison Wesley
Professional, 1st edition, 2005.

[15] VX heavens. vx.netlux.org.

[16] A. Walenstein, R. Mathur, M. R. Chouchane, and
A. Lakhotia. Normalizing metamorphic malware using
term-rewriting. In 6th IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM),
2006.

[17] A. Walenstein, R. Mathur, M. R. Chouchane, and
A. Lakhotia. The design space of metamorphic
malware. In 2nd International Conference on
i-Warfare and Security (ICIW), 2007.

